3-D ERT Monitoring of Salt Tracer Tomography
Field Experiments and Inversion using Ensemble-Kalman Filtering

Veronika Rieckh1, Carsten Leven1, Olaf A. Cirpka1
1 Center of Applied Geoscience, University of Tübingen, Hölderlinstr. 12, D-72074 Tübingen, Germany
veronika.rieckh@uni-tuebingen.de, carsten.leven@uni-tuebingen.de, olaf.cirpka@uni-tuebingen.de

Will additional ERT Data improve parameter estimation of model parameters of a tracer tomography experiment?

Field Setup
- Ring electrodes every 0.5 m
- Packers
- Measurement devices:
 - pressure sensors
 - fluorometer
 - ERT device (Syscal)

Data Processing
1. Data filtering, noise removal
2. Temporal moments given by \(m_{k}(x) = \int_{0}^{m_{k}} c(x, t) \, dt \)

Ensemble Kalman Filter
- Forecast step:
 \[
 y_{t}^{\text{sim}} = g(\tilde{p}_{t-1}, \tilde{x}_{t-1})
 \]
- Update step:
 \[
 P_{t} = P_{t-1} + \beta Q_{YY}(Q_{YY} + R)^{-1}(Y_{t}^{\text{real}} - (Y_{t}^{\text{sim}} - \epsilon_{t}))
 \]

Steady-state conditions
- performed under steady-state conditions
- tracer is injected in several depths
- ERT measurement every 30 min

Tracer tomography
-

\(m_{0} \) total mass/discharge
\(t_{c} = \frac{m_{1}}{m_{0}} \) mean time of breakthrough

\(\epsilon \) measurement noise
\(\beta \) damping factor
\(R \) covariance matrix of measurement errors
\(Q_{YY}, Q_{PY} \) auto-/cross-covariance matrices of model observations and parameters