Publication: Continuous dissolved gas tracing for fracture-matrix exchanges

in Geophysical Research Letters (August 2020)
by Richard Hoffmann, Pascal Goderniaux, Pierre Jamin, Eliot Chatton, Jérôme de la Bernardie, Thierry Labasque, Tanguy Le Borgne, Alain Dassargues


Transport in fractured media plays an important role in a range of processes, from rock weathering and microbial processes to contaminant transport, and energy extraction and storage. Diffusive transfer between the fracture fluid and the rock matrix is often a key element in these applications. But the multiscale heterogeneity of fractures renders the field assessment of these processes extremely challenging. This study explores the use of dissolved gases as tracers of fracture‐matrix interactions, which can be measured continuously and highly accurately using mobile mass spectrometers. Since their diffusion coefficients vary significantly, multiple gases are used to probe different scales of fracture‐matrix exchanges. Tracer tests with helium, xenon and argon were performed in a fractured chalk aquifer and resulting tracer breakthrough curves are modelled. Results show that continuous dissolved gas tracing with multiple tracers provide key constrains on fracture matrix interactions and reveal unexpected scale effects in fracture‐matrix exchange rates.

Access to article

Access to data

More on ESR11 research project

Publication: Which fractures are imaged with Ground Penetrating Radar? Results from an experiment in the Äspö Hardrock Laboratory, Sweden

in Engineering Geology (Volume 273, August 2020)
by Justine Molron, Niklas Linde, Ludovic Baron, Jan-Olof Selroos, Caroline Darcel, Philippe Davy


Identifying fractures in the subsurface is crucial for many geomechanical and hydrogeological applications. Here, we assess the ability of the Ground Penetrating Radar (GPR) method to image open fractures with sub-mm apertures in the context of future deep disposal of radioactive waste. GPR experiments were conducted in a tunnel located 410 m below sea level within the Äspö Hard Rock Laboratory (Sweden) using 3-D surface-based acquisitions (3.4 m × 19 m) with 160 MHz, 450 MHz and 750 MHz antennas. The nature of 17 identified GPR reflections was analyzed by means of three new boreholes (BH1-BH3; 9–9.5 m deep). Out of 21 injection and outflow tests in packed-off 1-m sections, only five provided responses above the detection threshold with the maximum transmissivity reaching 7.0 × 10−10 m2/s. Most GPR reflections are situated in these permeable regions and their characteristics agree well with core and Optical Televiewer data. A 3-D statistical fracture model deduced from fracture traces on neighboring tunnel walls show that the GPR data mainly identify fractures with dips between 0 and 25°. Since the GPR data are mostly sensitive to open fractures, we deduce that the surface GPR method can identify 80% of open sub-horizontal fractures. We also find that the scaling of GPR fractures in the range of 1–10 m2 agrees well with the statistical model distribution indicating that fracture lengths are preserved by the GPR imaging (no measurement bias). Our results suggests that surface-GPR carries the resolution needed to identify the most permeable sub-horizontal fractures even in very low-permeability formations, thereby, suggesting that surface-GPR could play an important role in geotechnical workflows, for instance, for industrial-scale siting of waste canisters below tunnel floors in nuclear waste repositories.

Access to full article

Access to dataset

More on ESR 4 research project

Publication: Time-lapse cross-hole electrical resistivity tomography (CHERT) for monitoring seawater intrusion dynamics in a Mediterranean aquifer

in HESS (April 2020)
by Andrea Palacios, Juan José Ledo, Niklas Linde, Linda Luquot, Fabien Bellmunt, Albert Folch, Alex Marcuello, Pilar Queralt, Philippe A. Pezard, Laura Martinez, Laura del Val, David Bosch, Jesus Carrera


Surface electrical resistivity tomography (ERT) is a widely used tool to study seawater intrusion (SWI). It is noninvasive and offers a high spatial coverage at a low cost, but its imaging capabilities are strongly affected by decreasing resolution with depth. We conjecture that the use of CHERT (cross-hole ERT) can partly overcome these resolution limitations since the electrodes are placed at depth, which implies that the model resolution does not decrease at the depths of interest. The objective of this study is to test the CHERT for imaging the SWI and monitoring its dynamics at the Argentona site, a well-instrumented field site of a coastal alluvial aquifer located 40 km NE of Barcelona. To do so, we installed permanent electrodes around boreholes attached to the PVC pipes to perform time-lapse monitoring of the SWI on a transect perpendicular to the coastline. After 2 years of monitoring, we observe variability of SWI at different timescales: (1) natural seasonal variations and aquifer salinization that we attribute to long-term drought and (2) short-term fluctuations due to sea storms or flooding in the nearby stream during heavy rain events. The spatial imaging of bulk electrical conductivity allows us to explain non-monotonic salinity profiles in open boreholes (step-wise profiles really reflect the presence of freshwater at depth). By comparing CHERT results with traditional in situ measurements such as electrical conductivity of water samples and bulk electrical conductivity from induction logs, we conclude that CHERT is a reliable and cost-effective imaging tool for monitoring SWI dynamics.

Full article here

More on ESR14 research project

Publication: Time-Lapse Seismic and Electrical Monitoring of the Vadose Zone during A Controlled Infiltration Experiment at the Ploemeur Hydrological Observatory, France

in Water (April 2020)
by Lara Blazevic, Ludovic Bodet, Sylvain Pasquet, Niklas Linde, Damien Jougnot, Laurent Longuevergne


The vadose zone is the main host of surface and subsurface water exchange and has important implications for ecosystems functioning, climate sciences, geotechnical engineering, and water availability issues. Geophysics provides a means for investigating the subsurface in a non-invasive way and at larger spatial scales than conventional hydrological sensors. Time-lapse hydrogeophysical applications are especially useful for monitoring flow and water content dynamics. Largely dominated by electrical and electromagnetic methods, such applications increasingly rely on seismic methods as a complementary approach to describe the structure and behavior of the vadose zone. To further explore the applicability of active seismics to retrieve quantitative information about dynamic processes in near-surface time-lapse settings, we designed a controlled water infiltration experiment at the Ploemeur Hydrological Observatory (France) during which successive periods of infiltration were followed by surface-based seismic and electrical resistivity acquisitions. Water content was monitored throughout the experiment by means of sensors at different depths to relate the derived seismic and electrical properties to water saturation changes. We observe comparable trends in the electrical and seismic responses during the experiment, highlighting the utility of the seismic method to monitor hydrological processes and unsaturated flow. Moreover, petrophysical relationships seem promising in providing quantitative results.

The article was selected in the editor’s choice.

Full article here

More on ESR5 research project

AGU Outstanding Student Presentation Award 2019

Justine discussing her poster (Credit Martin Stigsson)

The AGU Outstanding Student Presentation Award, assessing Master’s and PhD students for their research in the geosciences, awards the top 2-5% of presenters in each Section. ENIGMA Justine Molron is one of them in 2019.

She presented a poster on “A field assessment of the ability of Ground Penetrating Radar to detect fractures in very low permeable crystalline rock“.

Well done Justine!

More on ENIGMA fellows’ experience at the 2019 Fall Meeting in San Francisco

More on ESR4 research project

More on OSUR website

More on the AGU website