Congratulation Doctor Anne-Karin Cooke !

ENIGMA fellow Anne-Karin Cooke successfully defended her thesis “Characterisation of a new mobile absolute quantum gravimeter: Application in groundwater storage monitoring” on Friday 30th October 2020 virtually from Montpellier University. Congrats!

Abstract
Gravimetry studies the variations of the Earth’s gravity field which can be linked to mass changes studied in various disciplines of the Earth sciences. The gravitational attraction of the Earth (referred to as g) is measured with gravimeters. Quantum gravimeters provide the possibility of continuous, high-frequency absolute gravity monitoring without instrumental drift while remaining user-friendly and transportable. We assess the performance of the absolute quantum gravimeter device AQG#B01, developed by Muquans, in view of its precision, stability, repeatability and of future terrain deployment. The measurement of g was found to not be influenced by temperature and tilt changes. Furthermore, the potential use of monitoring the vertical gravity gradient in hydrogeophysical applications was assessed experimentally and using hydrogravimetrical modelling. Time-lapse vertical gravity gradient data can deliver additional information that can be used to constrain the subsurface water distribution.


More on the defense: http://www.gm.univ-montp2.fr/spip.php?article3346&lang=fr

More on Anneka’s research project

Publication: Inferring geostatistical properties of hydraulic conductivity fields from saline tracer tests and equivalent electrical conductivity time-series

in Advances in Water Resources (2020)
by Alejandro Fernandez Visentini, Niklas Linde, Tanguy Le Borgne, Marco Dentz
https://doi.org/10.1016/j.advwatres.2020.103758

Abstract

We use Approximate Bayesian Computation and the Kullback–Leibler divergence measure to quantify to what extent horizontal and vertical equivalent electrical conductivity time-series observed during tracer tests constrain the 2-D geostatistical parameters of multivariate Gaussian log-hydraulic conductivity fields. Considering a perfect and known relationship between salinity and electrical conductivity at the point scale, we find that the horizontal equivalent electrical conductivity time-series best constrain the geostatistical properties. The variance, controlling the spreading rate of the solute, is the best constrained geostatistical parameter, followed by the integral scales in the vertical direction. We find that horizontally layered models with moderate to high variance have the best resolved parameters. Since the salinity field at the averaging scale (e.g., the model resolution in tomograms) is typically non-ergodic, our results serve as a starting point for quantifying uncertainty due to small-scale heterogeneity in laboratory-experiments, tomographic results and hydrogeophysical inversions involving DC data.

Access to full article

More on ESR9 research project

Publication: Heterogeneity-Induced Mixing and Reaction Hot Spots Facilitate Karst Propagation in Coastal Aquifers

in Geophysical Research Letters (2020)
by Kevin de Vriendt, Maria Pool, Marco Dentz
https://doi.org/10.1029/2020GL087529

Abstract

The freshwater‐seawater mixing zone is a critical region for chemical activity. Yet little is known about the influence of ever present spatial heterogeneity on the dynamics of mixing and calcite dissolution, which play a key role in the understanding of karst development. We analyze the impact of different heterogeneity structures and strengths on the local and global response of mixing and dissolution rates across the saltwater freshwater mixing zone. We find that the initial heterogeneity structure significantly impacts observed dissolution and mixing patterns, which sheds some new light on karst propagation in coastal aquifers.

Access to article

More on ESR1 research project

Publication: Continuous dissolved gas tracing for fracture-matrix exchanges

in Geophysical Research Letters (August 2020)
by Richard Hoffmann, Pascal Goderniaux, Pierre Jamin, Eliot Chatton, Jérôme de la Bernardie, Thierry Labasque, Tanguy Le Borgne, Alain Dassargues
https://doi.org/10.1029/2020GL088944

Abstract

Transport in fractured media plays an important role in a range of processes, from rock weathering and microbial processes to contaminant transport, and energy extraction and storage. Diffusive transfer between the fracture fluid and the rock matrix is often a key element in these applications. But the multiscale heterogeneity of fractures renders the field assessment of these processes extremely challenging. This study explores the use of dissolved gases as tracers of fracture‐matrix interactions, which can be measured continuously and highly accurately using mobile mass spectrometers. Since their diffusion coefficients vary significantly, multiple gases are used to probe different scales of fracture‐matrix exchanges. Tracer tests with helium, xenon and argon were performed in a fractured chalk aquifer and resulting tracer breakthrough curves are modelled. Results show that continuous dissolved gas tracing with multiple tracers provide key constrains on fracture matrix interactions and reveal unexpected scale effects in fracture‐matrix exchange rates.

Access to article

Access to data


More on ESR11 research project

Publication: Which fractures are imaged with Ground Penetrating Radar? Results from an experiment in the Äspö Hardrock Laboratory, Sweden

in Engineering Geology (Volume 273, August 2020)
by Justine Molron, Niklas Linde, Ludovic Baron, Jan-Olof Selroos, Caroline Darcel, Philippe Davy
https://doi.org/10.1016/j.enggeo.2020.105674

Abstract

Identifying fractures in the subsurface is crucial for many geomechanical and hydrogeological applications. Here, we assess the ability of the Ground Penetrating Radar (GPR) method to image open fractures with sub-mm apertures in the context of future deep disposal of radioactive waste. GPR experiments were conducted in a tunnel located 410 m below sea level within the Äspö Hard Rock Laboratory (Sweden) using 3-D surface-based acquisitions (3.4 m × 19 m) with 160 MHz, 450 MHz and 750 MHz antennas. The nature of 17 identified GPR reflections was analyzed by means of three new boreholes (BH1-BH3; 9–9.5 m deep). Out of 21 injection and outflow tests in packed-off 1-m sections, only five provided responses above the detection threshold with the maximum transmissivity reaching 7.0 × 10−10 m2/s. Most GPR reflections are situated in these permeable regions and their characteristics agree well with core and Optical Televiewer data. A 3-D statistical fracture model deduced from fracture traces on neighboring tunnel walls show that the GPR data mainly identify fractures with dips between 0 and 25°. Since the GPR data are mostly sensitive to open fractures, we deduce that the surface GPR method can identify 80% of open sub-horizontal fractures. We also find that the scaling of GPR fractures in the range of 1–10 m2 agrees well with the statistical model distribution indicating that fracture lengths are preserved by the GPR imaging (no measurement bias). Our results suggests that surface-GPR carries the resolution needed to identify the most permeable sub-horizontal fractures even in very low-permeability formations, thereby, suggesting that surface-GPR could play an important role in geotechnical workflows, for instance, for industrial-scale siting of waste canisters below tunnel floors in nuclear waste repositories.

Access to full article

Access to dataset


More on ESR 4 research project