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Objectives of the Work Package 

The challenges addressed in WP 5 are  

(1) to enhance our capability to represent complex sedimentary and fractured structures that 

determine the spatial distribution of preferential flow paths, the dispersion of dissolved 

chemical species, and the related fluxes and reaction rates, 

(2) to infer groundwater flow transport and reaction processes from geophysical measurements 

in a consistent, fully coupled framework rather than relying on decoupled geophysical 

inversion and hydrological interpretation of the tomograms. 

 

Description of work  

The identified activities are  

(i) to define new strategies for representing complex architectures of sedimentary and fractured 

media, based on training images, multi-point geostatistics, and genetic approaches, 

(ii) to develop inversion frameworks that integrate data of diverse nature, and address model 

uncertainty, 

(iii) to establish novel tomographic inversion approaches for 3-D imaging based on fully coupled 

inversion of time lapse ERT and GPR of tracer motion, hydraulic tomography and heat tracer 

tests.  
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Introduction 

The transport of fluids and their constituents in the subsurface causes a change in the physical 

properties of the medium. The aim of hydrogeophysical investigations is to study these changes by 

geophysical surveying techniques in order to infer the groundwater flow and solute transport behavior 

in the investigated domain, estimate hydraulic, geophysical and other material properties, and predict 

the system behavior under changing boundary conditions. Hydrogeological data such as hydraulic 

heads, tracer concentrations, or derived variables such as solute travel times provide additional 

information to the geophysical data. While combining data of such disparate nature should 

theoretically improve the accuracy of the subsurface description, it also adds complexity, introduces 

additional properties to be considered (which are non-uniform and uncertain by themselves) and can 

cause inconsistent interpretations. Therefore, the joint analysis of geophysical and hydrogeological 

data is an active area of research (Binley et al. 2015; Rubin and Hubbard 2005; Vereecken et al. 2006). 

The aim of this report is to give an overview of existing algorithms to jointly use hydrological and 

geophysical data in a single problem set. We have divided available methods into four groups of inverse 

modeling approaches and summarize these in a paragraph each. 

Inverse modelling 

The most important parameter in hydrogeology, the hydraulic conductivity, cannot directly be 

measured in-situ. Instead, it must be inferred from measurements of dependent state variables, such 

as hydraulic heads. The usual procedure of fitting analytical solutions to the observations (e.g., in 

pumping-test analysis) is based on the assumption that the subsurface properties are spatially uniform, 

which is in contrast to the observation that subsurface environments are highly heterogeneous. Thus, 

the aim of hydrogeological inverse modeling is to infer the spatial distribution of hydraulic parameters 

from a few measurements of dependent quantities. As the number of observations is always finite, 

whereas a continuous parameter field is theoretically infinite-dimensional, regularization is needed, in 

which either the domain is discretized into a fixed set of zones, or deviations from smoothness are 

penalized, or the parameter field is assumed to be autocorrelated with known correlation function. 

If more information is included in the inversion, typically also more parameter fields need to be 

estimated: storativity in case of transient hydraulic-head information, porosities and dispersivities in 

case of concentration measurements, and petrophysical parameters in case of geophysical 

measurements. At the same time, the measurements are prone to measurement error and potential 

bias, and the models suffer from numerical errors and conceptual deficiencies. In inverse modeling, 

the task is thus to find effective parameter distributions so that the models fit the observations within 

their observational error, while avoiding overfitting to spurious oscillations in the data. A review on 

inverse methods for in subsurface hydrology is given by Zhou et al. (2014), among others.  
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Standard techniques often divide the subsurface into distinct zones and estimate a finite set of zone-

related parameters. This procedure predefines the structure of the solution. In an alternative 

approach, each grid cell of a numerical model is allowed to have its own parameter set, which 

facilitates high flexibility. However, the number of model grid cells is typically much larger than the 

number of observations, thus requiring regularization as mentioned above. In problems that are 

underdetermined without regularization, many parameter distributions can explain the data equally 

well. Stochastic approaches aim at exploring the ensemble of all parameter fields that can explain the 

observations, called the conditional parameter fields, with respect to mean parameters, remaining 

uncertainty, and correlation among the conditional parameter sets. Some approaches, such as the 

Quasi-Linear Geostatistical Approach (Kitanidis 1995) explore the uncertainty bounds by linearized 

uncertainty propagation, which requires that the dependence of the observations on the parameters 

is only weakly nonlinear, while other methods generate multiple parameter sets of equal probability. 

Geostatistical approaches targeting the maximum a-posteriori likelihood of the parameter sets are 

mathematically equivalent to Tikhonov regularization, commonly applied in geophysical inversion, in 

which deviations from a given mean value or derivatives are penalized (Tarantola, 2005). Targeting the 

mean parameter values, the approaches do not yield the fine-scale variations of parameters that exist 

in the unknown reality. While it is impossible to perfectly resolve the heterogeneity on all scales, 

neglecting fine-scale variability altogether can lead to erroneous macroscopic behavior (e.g., solute 

plumes remain too compact in the model prediction), requiring parameterizations of the unresolved 

variability (e.g., the introduction of resolution-dependent dispersion coefficients). Thus, conditional 

realizations of parameter fields have the advantage that the fine-scale variability is simulated rather 

than accounted for by parameterization. Conversely, they typically require a higher computational 

effort than the estimation of the smooth best estimate. 

The competing objectives of an inverse method for hydrogeophysics are thus: 

(i) The approach should in principle be capable of including as many types of data sets as 

possible without redeveloping the entire code. 

(ii) The approach should allow maximum flexibility with respect to spatial representation of 

the parameter fields. 

(iii) The approach should reflect the coupled physical behavior of flow, transport, and 

geophysical surveying in the subsurface 

(iv) The approach should be based on conditional realizations rather than aiming at a single 

best estimate to address uncertainty and avoid parameterization of the effects of 

unresolved heterogeneity on flow and transport. 

(v) The approach should not introduce inversion artifacts (bias caused by the inversion itself). 

(vi) The approach should be computationally efficient, easy to implement, and easy to extend. 

Obviously, the last requirement stands in contrast to the preceding ones so that compromises have to 

be found.  
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The most common approach in hydrogeophysics is to decouple the inverse geophysical problem from 

the inverse hydrogeological problems (e.g., Day-Lewis et al. 2006; Day-Lewis et al. 2003; Johnson et al. 

2012; Muller et al. 2010; Perri et al. 2018; Vanderborght et al. 2005). That is, the geophysical 

measurements are inverted to obtain presumed distributions of real or complex electric resistivity, 

seismic velocity, or other typical target properties of geophysics. These are then transformed either 

directly to hydraulic parameter estimates by assuming petrophysical relationships, or to hydraulic state 

variables such as concentrations that are inverted in a second step. The key difficulty of this approach 

is that the geophysical inversion is not constrained to geophysical parameter fields that meet hydraulic 

conservation laws. A classic example is that the inversion of electrical-resistivity tomography (ERT) data 

gathered during a salt-tracer test leads to tomograms that – after being transferred to concentration 

distributions – don’t conserve solute mass (Singha and Gorelick 2005). This can be avoided in fully 

coupled hydrogeophysical inversion, in which the geophysical surveying data are directly inverted to 

the hydraulic parameters.  

Geophysical methods for hydrological applications 

Applying geophysical surveying techniques has a long-standing tradition in hydrogeology (Butler 2005; 

Kirsch 2006). The most classic applications aim at revealing subsurface structural information, such as 

the base of a gravel aquifer and the extent of features within the aquifer. Also the detection of the 

groundwater table by geoelectrical methods has been used already decades ago. Exerting a hydraulic 

stress onto the groundwater body does not only change hydraulic state variables but also geophysical 

properties which can be detected by geophysical surveying. As example, lowering the groundwater 

table in a pumping test can be observed by gravimetric measurements (e.g., Gehman et al. 2009), or 

via the change of electrical properties with changing water saturation by geoelectrical and/or 

electromagnetic surveying (Rizzo et al. 2004; Straface et al. 2007). The clearest response with respect 

to electrical properties is gained by changing the concentration of dissolved solids in salt-tracer tests 

or in the monitoring of seawater intrusion. Changes in geophysical properties can be monitored by 

geophysical surveying techniques. Because of their non-invasive nature, their speed and cost 

effectiveness, geophysical methods are considered “smart” observation techniques. Combining them 

with hydraulic tests, in which the cause of changes in geophysical properties is perfectly known, helps 

overcoming problems of ambiguity.  
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Geophysical Methods 

Excellent introductions to the field of shallow subsurface geophysics are given by Rubin and Hubbard 

(2005) and Hubbard and Linde (2010). Knödel et al. (2007) and Kirsch (2006) focus on the application 

of geophysical methods and give practical advice for planning surveys and interpreting the results. In 

the following, we briefly review the four most important techniques.  

Electrical Resistivity Tomography 

Electrical Resistivity Tomography (ERT) is a geoelectrical method to determine the distribution of 

electric conductivity in the subsurface. An electrical current is injected into two electrodes and the 

occurring voltage difference is measured at two other electrodes. Parallel instruments are able to 

measure various voltage differences simultaneously and provide fully automated monitoring 

procedures. Due to its speed, flexibility and simplicity, ERT is widely used in many applications. 

Various lab studies (Bing and Greenhalgh, 1997; Pollock and Cirpka, 2010; Lekmine et al., 2017) have 

shown that Electrical Resistivity Tomography is suitable for tracking a moving fluid parcel which differs 

in electrical conductivity from the background solution. ERT has also been used in field applications, 

either for the monitoring of salt-tracer tests (Singha and Gorelick, 2005; Perri et al., 2012; Doro, 2015), 

or for the monitoring of electrical-conductivity fluctuations in the subsurface (e.g., Doetsch et al., 2012; 

Auken et al., 2014; Wagner et al., 2015; Coscia et al. 2011; Rosales et al. 2012). Monitoring seawater 

intrusion (e.g., Nguyen et al. 2009) as well as landslide monitoring (e.g., Perrone et al. 2014; Loke et 

al., 2013; Friedel et al., 2006; Travelletti et al. 2012) are other possible fields. 

Most of the cited studies applied a decoupled approach of interpreting the ERT data. They typically 

image the distribution of dissolved salts (from tracer tests or seawater intrusion). These images are 

then used to interpret the flow field. Examples are given in de Franco et al. (2009); Martinez et al. 

(2009); Zarroca et al. (2011) who investigated dynamics of the saltwater intrusion. An exception is 

Pollock and Cirpka (2010), who determined the temporal moments of the ERT response in a salt-tracer 

test and applied a fully coupled inversion method based on the Quasi-Linear Geostatistical Approach 

of Kitanidis (1995). Bouzaglou et al. (2018) interpreted ERT signals obtained in laboratory tests on sea 

water intrusion applying a fully coupled approach using SUTRA as flow-and-transport simulator and 

the Ensemble Kalman Filter as inverse kernel. 

A key problem of ERT is that the underlying Poisson equation is an elliptic diffusion equation. Like all 

other potential methods, ERT is incapable of detecting sharp contrasts, both in the geological structure 

and the salt-concentration of the tracer solution. The smoothing constraints commonly applied for 

regularization in the inversion prevents the recovery of sharp contrasts even further. Another inherent 

problem of the method is its inability to detect more resistive zones embedded in a higher conductive 

environment as the current flows primarily in the more conductive zones. Even if these zones are large 

enough to be detected, the ability to resolve the specific value of electrical conductivity is very limited. 

To overcome the mentioned shortcoming of the methods, many studies have coupled ERT with other 
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geophysical methods (Doetsch et al., 2010; Linde et al., 2008; Linde et al., 2006; Gallardo and Meju, 

2004; Binley et al. 2002). Synthetic studies (Jardani et al., 2013; Irving and Singha, 2010) demonstrate 

the potential of fully-coupled ERT with the transport problem in salt tracer tests. Pollock and Cirpka 

(2010) and Camporese et al. (2015) have used it in a laboratory experiment.  

A major problem in field studies is that the petrophysical relationship for converting bulk electrical 

conductivity to salt-tracer concentrations (or mixing ratios of seawater) is uncertain. Attempts have 

been made to couple ERT, Ground Penetrating Radar (GPR) and hydrological data based on structural 

similarity constraints (Lochbühler et al., 2013). A cross-gradient regularization ensures structural 

similarity of the obtained parameter fields. 

For the vadose zone, Binley et al. (2002) have shown that electrical resistivity as well as cross-borehole 

radar data bears information on the soil moisture dynamics, that can be integrated into soil-

hydrological modeling. In the mentioned study only a trial-and-error approach was used to fit the 

geophysical to the hydrological data. 

Electromagnetic Induction 

This method uses electromagnetic induction of the soil to study electrical conductivity and magnetic 

susceptibility distributions in the shallow subsurface. It usually consists of a single transmitter and 

several receiver coils in a fixed distance. Unlike ERT, the measurement device does not require direct 

coupling to the ground, making it feasible to be mounted on small vehicles for rapid data collection. 

The investigations depth depends on the coil separation. 

Electromagnetic induction is often applied for soil moisture mapping (Lavoué et al., 2010; Robinson et 

al., 2009) as well as studying the distribution of contaminants in soils (Yoder et al., 2001). Studies for 

the saturated zone are rare. In general, electromagnetic induction is primarily used as a mapping tool. 

Data sets from devices with several receiver coils also permit inferring the vertical electric-conductivity 

profile (Mester et al., 2011). Often a local 1-D assumption, where the conductivity variations only occur 

in the vertical axis, is taken. Gradient-based inversion approaches work well as the number of model 

parameters is small. Depending on the prior knowledge, the data can be inverted for the value of 

electrical conductivity in a given number of layers. The thickness of these layers may be known a-priori 

or also included as parameters. With limited prior information an Occam inversion (Constable et al. 

1987) in 1-D is used. The model parameters are the electrical conductivity of predefined fixed layers 

and regularized with a smoothing constraints.  

Electromagnetic methods are used in hydrological application, e.g., for the monitoring of 

spatiotemporal moisture variations and the estimation of saturated and unsaturated hydraulic 

conductivity (e.g., Farzamian et al. 2015; Farzamian et al. 2017; Huang et al. 2016; Huang et al. 2017). 
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Ground Penetrating Radar 

In Ground Penetrating Radar (GPR), high frequency electromagnetic waves are used to investigate the 

subsurface. The propagation of these waves is sensitive to the dielectric permittivity and the electric 

conductivity of the subsurface. These waves are also reflected at interfaces exhibiting sharp contrasts 

of these properties. The method is either used with surface measurements or in a tomographic setup 

in boreholes. Depending on the objectives of the study and the survey design, imaging as well as 

parameter estimations is possible. The latter is more suitable for fully-coupled hydrogeophysical 

inversion. An inherent problem of GPR in practical applications is that it becomes unsuitable at sites 

with high clay contents. Clay attenuates the electromagnetic wave severely and thus leads to 

insufficient signal strength. In many fluvial settings, alluvial fines prohibit the use of surface GPR for 

the investigation of the underlying sandy gravel aquifers. In these situations, however, cross-borehole 

GPR is suitable. In several studies (e.g, Doetsch et al. (2010) for sedimentary aquifers, Looms et al. 

(2008) for the unsaturated zone, and Dorn et al. (2012) for fractured aquifers) GPR was used for 

monitoring flow and transport in the subsurface.  

Attenuation of the electromagnetic waves has been traditionally disregarded as a source of 

information about the subsurface, including its hydrologic state (e.g., Linde et al. 2006). However, 

recent advances in full-waveform forward modeling and full-waveform inversion for GPR (Meles et al. 

2010) have made feasible to quantify attenuation (in addition to travel time) and relate it to changes 

in electric conductivity. As a result, recent studies have proposed to use attenuation data from full-

waveform inversion to monitor changes in hydrologic states (Jadoon et al. 2012; Haruzi et al. 2018). 

The underlying principle for fully-coupled analysis is provided by the possibility to relate changes in 

hydrologic states to changes in both travel time and attenuation (phase and amplitude) of the 

electromagnetic waves, which are mainly dependent on dielectric permittivity and electric 

conductivity, respectively. Kowalsky et al. (2005) give an early example where fully-coupled inversion 

of cross-hole GPR was applied to estimate soil hydraulic parameters during infiltration experiments by 

relating changes in water content to changes in travel time (i.e. changes in dielectric permittivity). Most 

of the studies using a fully-coupled inversion for GPR data have focused on changes in water content 

and simple parameterizations of the subsurface (Slob et al., 2008; Jadoon et al., 2012; Busch et al. 

2013). 

Seismics 

For a seismic survey a sound wave, travelling through the subsurface, is triggered at a defined source 

location and recorded by various geophones distributed over various distances or boreholes. The 

travel-time of such a wave is affected by various physical properties of the material, specifically the 

density and the Young’s modulus. Also the wave is reflected on interfaces where these parameters 

change abruptly. In hydrogeophysical surveys, the fact that increasing fluid pressure will decrease the 

effective stress and hence the speed of the sound wave is exploited. Especially studies using the 
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occurring differences between primary and secondary waves, which correspond to compressional 

waves and shear waves, give promising results for tracking flow in the subsurface (e.g. Pasquet et al. 

2015). 

Principles of the Joint Analysis of Geophysical and Hydraulic Data 

A key challenge in coupling the analysis of hydraulic and geophysical data in a hydrogeophysical 

framework is that the datasets used are disparate at first, and a unique relationship is difficult to 

establish. The joint analysis of hydrogeological and geophysical data can be based on (1) assumed 

petrophysical relationships, (2) assumed structural similarity of parameter fields, (3) targeted 

triggering of changes in geophysical properties during hydraulic tests. 

(1) Petrophysical relationships 

Petrophysical relationships are laws connecting two or more physical properties of a rock. They are 

typically based on a conceptual model of the pore geometry and properties of the grain surfaces. Some 

petrophysical laws involve hydraulic state variables, such as the water saturation or the concentration 

of salt, while others predict both hydraulic properties, such as the hydraulic conductivity, and 

geophysical properties, such as the electrical resistivity, the spectral complex resistivity, or the 

electromagnetic permittivity. In petroleum engineering, empirical relationships between porosity 

(which is well accessible by geophysical borehole logging) and intrinsic permeability are popular. 

Unfortunately, establishing these relationships is often site-specific, so that without site-specific 

calibration the spatial distribution of, e.g., electric conductivity, cannot directly be transferred to that 

of hydraulic conductivity. 

(2) Structural similarity 

The key idea of joint inversion within geophysics is that the distribution of geophysical properties is 

related to structural features of the subsurface. The assumption is that different facies are distinct 

from each other with respect to several geophysical properties, such as electrical resistivity and seismic 

velocity. Even without a clear petrophysical relationship among those properties, the inference of one 

property can be enhanced by considering the estimated spatial distribution of the other property. 

Cross-gradient approaches, in which gradients of the different properties are forced to correlate, have 

been widely used in near-surface geophysical inversion with promising results regarding the 

identification of different geophysical facies (e.g., Doetsch, 2010; Lochbühler, 2013). Some attempts 

have been made to interpret the identified facies also as units with distinct hydraulic parameters, so 

called hydrofacies. In this framework, geophysical methods are used to identify the distribution of a 

few distinct materials, the hydraulic properties of which need to be identified by calibrating flow-and-

transport models using the structural zonation from geophysics. 
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(3) Geophysical monitoring of hydraulic tests 

The two approaches listed above are based on a static view onto the subsurface, in which geophysics 

is used to identify the fixed spatial distribution of electric, magnetic, electromagnetic, seismic, or 

gravimetric properties of the subsurface. This is very much in line with classic geophysical surveying, 

performed once to obtain structural information that does not change in time. A key difficulty in 

relating these properties to hydraulic properties lies in the ambiguity of the relationships. To overcome 

at least some of the ambiguity, geophysics may be used to monitor changes of subsurface properties 

induced by hydraulic tests. This could be pumping tests, in which the water table and thus all water-

saturation related geophysical properties change, or salt-tracer tests, in which the electric conductivity 

is altered by the tracer injection. If sufficient hydraulic data exists, also natural signals (both water-

table fluctuations and changes in salinity) can be monitored by geophysical methods and well 

interpreted by hydrological models.  

The key difference to the static analysis is that the cause of the induced change is known. If time series 

are considered, the laws describing the transient behavior of hydraulic state variables are well known, 

and even without exactly knowing the hydrogeological parameters, the timing of the geophysical 

response is constrained. In classic time-lapse geophysical inversion, regularization in time is applied by 

penalizing major changes from one time step to the next. This regularization in time is reasonable 

because the properties only gradually change. However, a physically more consistent regularization is 

to enforce that the hydraulic state variables (hydraulic head, tracer concentration) meet the well-

known conservation laws of groundwater flow and solute transport. As the coefficient of the flow and 

transport equations are not known, the inverse problem now involves jointly estimating the evolution 

of the hydraulic state variables, the hydraulic parameters, and parameters related to the petrophysical 

relationships between the hydraulic and geophysical properties. This problem can be seen as a data 

assimilation application when the full time series is exploited. The latter strategy is followed by 

Camporese et al. (2015) who used the Ensemble Kalman Filter to analyze the monitoring of a 

laboratory-scale seawater-intrusion experiment monitored by ERT. The coupled model of Pflotran for 

groundwater flow and transport (Lichtner et al. 2017) and E4D for geolectrics (Johnson et al. 2010) is 

set up as the forward model for the same purpose. 

A key difficulty of coupled data assimilation with updating the parameters is that many different 

quantities are simultaneously updated: the observed states at locations without observations and 

parameters of the system, which are supposed to be static. A misfit between model prediction and 

observations can be compensated by updating the states only (which is the main objective of classical 

data assimilation). While this does not improve the insight about the functioning of the system under 

investigation, it does at least improve the prediction of the immediate future. This would be the main 

purpose of classical real-time modeling (e.g. numerical weather forecast). Here, a model with wrong 

parameters is not considered to be too problematic, as the forecast is pulled towards the observations 

in each data assimilation cycle. Without data assimilation, however, the model would continuously 
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deviate from the real system. Data assimilation has been used in hydrogeology only recently (e.g., 

Hendricks-Franssen and Kinzelbach, 2008). In hydrogeophysics it is an attractive way of using 

geophysical measurements for pure monitoring purposes, e.g., in the observation of seawater 

intrusion. The only extension to purely hydraulic models needed is the geophysical measurement 

operator. 

If the target quantities are parameters rather than states, the data assimilation framework is 

somewhat more critical. Now, a misfit between model predictions and observations can be attributed 

to a wrong approximation of the states or to wrong parameters. Adding parameters of petrophysical 

relationships introduces even more degrees of freedom. In a purely hydrogeological application, 

Hendricks-Franssen and Kinzelbach (2008) augmented the state vector by the parameters, and per-

formed a parameter update less frequently than the state update. However, changes of hydraulic 

conductivity over time, which are inferred by the data assimilation method, are in contradiction to the 

expectation that hydraulic conductivity is a constant material property. Erdal and Cirpka (2016) 

showed that it is impossible to jointly infer hydraulic conductivity and recharge without strong prior 

knowledge. The same authors also discussed that environmental tracers react to hydraulic forcings on 

completely different time scales than hydraulic heads which makes their use in data assimilation 

difficult (Erdal and Cirpka 2017). While the hope in the joint assimilation of states and parameters is 

that the parameter fields stabilize, it is questionable whether this can be guaranteed if a sequence of 

models with associated parameters are jointly estimated, which is the case in fully couple 

hydrogeophysical data assimilation. 

The Validated Fully Coupled Hydrogeophysical Inversion Method of Pollock 

and Cirpka 

Pollock and Cirpka (2008; 2010; 2012) followed a different approach of fully coupled analysis of 

hydrogeophysical data. Their base setting was geoelectrical monitoring of artificial salt-tracer tests. 

That is, unlike to many field monitoring applications, the boundary conditions were well controlled. 

They related the timing of the response in geophysical surveying to the timing of the hydraulic 

response in the hydraulic test. Towards this end, they developed temporal-moment generating 

equations for the resistance perturbation of a geoelectrical configuration based on the temporal 

moments of salt-tracer concentrations and extended the quasi-linear geostatistical inversion method 

for temporal concentration moments (Cirpka and Kitanidis 2000) to the temporal moments of the 

resistance perturbations. With this, they could directly infer the hydraulic-conductivity distribution 

from the ERT signals without performing an intermediate purely geophysical inversion. The advantage 

of using temporal moments of concentration and electrical-resistance time series are threefold: 

(1) The large dataset of time-dependent observations is compressed in a physically meaningful 

way (zeroth moment: total response; first normalized moment: mean time of the response). 
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(2) The timing of the geophysical response is less sensitive to the petrophysical parameters (here 

the formation factor) than the measured electrical resistance itself. In essence the impact of 

the formation factor cancels almost out by taking the ratio of the first over the zeroth moment. 

(3) The dependence of the tracer arrival time (and thus of the mean arrival time in the 

geoelectrical monitoring) on hydraulic conductivity is monotonic, which dramatically increases 

the convergence radius of the inverse method. Even when starting with an initial parameter 

distribution that differs significantly from the final estimate, the search direction is clear. 

The method of Pollock and Cirpka (2010) uses a Gauß-Newton method with geostatistical 

regularization as inverse kernel. The sensitivity of all measurements with respect to all parameters is 

evaluated by adjoint equations, which are all steady-state equations. The steps in inverting the 

temporal moments of resistance perturbations are: 

(1) Solve the forward problem by: 

a. Solving the steady-state groundwater flow equation 

b. Solving the moment-generating equations of the zeroth and first moment of concentration 

c. Solving the moment-generating equations of the zeroth and first moment of resistance 

perturbation for each current-electrode configuration 

(2) Solve the sensitivity for each potential-electrode configuration with respect to log-hydraulic 

conductivity by: 

a. Solving the adjoint equations for the first moment and zeroth moment of resistance 

perturbation 

b. Solving the adjoint equation for the first and zeroth moment of concentration 

c. Solving the adjoint equation for hydraulic head 

d. Postprocessing of state variables and adjoint states to obtain the sensitivity 

(3) Perform a stabilized Gauß-Newton step to update the log-hydraulic conductivity field and return 

to step 1 until convergence is reached 

The scheme has been tested by 2-D laboratory experiments (Pollock and Cirpka, 2012). A parallelized 

3-D code for high-performance computing clusters has been developed and tested by virtual 

experiments (Schwede et al. 2012). The latter code version jointly inverts the temporal moments of 

resistance perturbations from ERT monitoring of tracer tests, temporal moments of solute 

concentrations, temporal moments of heat signals in heat-tracer tests, and hydraulic heads. 

A key difficulty of the temporal-moment generating equations is that they require a steady-state flow 

field, which is not easy to guarantee under field conditions. Also, the evaluation of temporal moments 

from signal time series requires that the series are complete. Truncated moments cannot be simulated 

by moment-generating equations. 

Based on a Gauß-Newton method, the code requires the evaluation of the sensitivity of all 

measurements with respect to all parameters, which is computationally very demanding and requires 
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the formulation and solution of at least as many adjoint partial differential equations as there are 

measurement configurations.  

While the underlying quasi-linear geostatistical approach can be used in a mode that infers conditional 

realizations rather than a single best estimate, the computational effort per realization is as high as 

the inference of the best estimate. This means that conditional realizations are computationally too 

expensive to be used in practice, implying the necessity to parameterize the effects of unresolved 

heterogeneity, e.g., by jointly estimating effective dispersion parameters (Nowak and Cirpka 2006). 

Also, the method is not set up to account for non-local parameterizations on the scale of unresolved 

heterogeneity (e.g., mobile-immobile transport), even though discrepancies between solute-

concentration observations and geoelectrical monitoring have been identified as signature of mobile-

immobile transport (e.g., Day-Lewis and Singha 2008; Singha et al. 2011; Swanson et al. 2012). 

Indications of anomalous transport also exist at the highly instrumented field site used by ESR 13 

(Sanchez-León et al. 2016). 

While the method of Pollock and Cirpka has been validated, we see the need to advance the approach 

in the following aspects: 

(1) Changing the inverse kernel from the Gauß-Newton method to an ensemble-based approach 

that directly generates conditional realizations. 

(2) Implementing a Jacobian-free inverse approach so that new measurement types can be easily 

integrated without developing the associated adjoint operator. 

(3) Performing transient calculations of flow, transport and associated ERT monitoring so that flow 

fluctuations in time and truncation of temporal-moments evaluations can be simulated in the 

forward operator. 

(4) Extending the temporal-moment based approach to address dual-domain (a.k.a. mobile-

immobile, anomalous, nonlocal) transport, either by extending the moment-generating 

equations or by performing transient simulations the results of which are characterized by 

their temporal moments. 

The development of such an improved approach and its application to field data sets is the objective 

of ESR 13. 
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Inversion Algorithms 

All inversion approaches have in common that they reduce the difference between the measured data 

and their prediction by the model, which is an optimization problem. If Gaussian errors are assumed, 

the misfit is expressed in terms of an L2-norm (Menke 2012). If 𝑓(𝑚) is a non-linear forward operator 

of the parameters 𝑚, and the measured data is contained by the data vector 𝑑𝑜𝑏𝑠, the objective 

function becomes, interpreted as the negative log-likelihood of the data in Bayesian inference: 

𝛷𝑑 = (𝑓(𝑚) − 𝑑𝑜𝑏𝑠)
𝑇𝐶𝑑𝑑

−1(𝑓(𝑚) − 𝑑𝑜𝑏𝑠) (1) 

If the number of independent measurements is considerably larger than the number of parameters, 

this objective function defines a well posed problem. A fine spatial resolution of the parameter fields, 

however, causes the problem to be underdetermined, requiring regularization (Tarantola, 2005; 

Menke, 2012). This can be achieved by adding a second term 𝛷𝑚 to the objective function with a 

relative weight 𝜆𝑚, expressing the relative importance of fitting the data versus meeting the additional 

constraints on the model parameters. Typical expressions for 𝛷𝑚 are the squared deviations from a 

prior mean value (damping) and the squared gradient of model parameters: 

𝛷𝑚
(0) = (𝑚 − 𝜇)𝑇(𝑚 − 𝜇) (2) 

𝛷𝑚
(1) = (𝐺𝑚)𝑇(𝐺𝑚) (3) 

in which 𝛷𝑚
(0) is the zeroth-order Tikhonov regularization term with vector of expected mean values 𝜇, 

and 𝛷𝑚
(1)

 is the first-order Tikhonov regularization term with the numerical gradient operator 𝐺. Both 

expressions are quadratic with respect to the parameter vector 𝑚 and thus resemble the kernel of a 

Gaussian distribution. The latter is assumed in geostatistical regularization, in which the model 

parameters are assumed to be a second-order stationary random space function: 

𝛷𝑚
(𝑔𝑒𝑜𝑠𝑡𝑎𝑡)

= (𝑚 − 𝜇)𝑇𝐶𝑚𝑚
−1 (𝑚 − 𝜇) (4) 

in which 𝐶𝑚𝑚 is the prior covariance matrix of the parameters resulting from the spatial discretization 

of the covariance function. 

The combined objective function now reads as: 

𝛷 = 𝛷𝑑 + 𝜆𝑚𝛷𝑚 (5) 

Note that the relative weight 𝜆𝑚 of the regularization is not needed in the geostatistical approach 

where this weight is part of the prior covariance function. Also, the model of the prior mean can be 

more complex than assuming a uniform value, and regularizations across known discontinuities can be 

broken to prevent smoothing across such interfaces. 

The inverse approaches listed below differ in the way of obtaining the minimum of the objective 

function. 
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Gauß-Newton and Conjugate-Gradient Type Approaches 

In gradient-based approaches, the model response to a parameter change is linearized: 

𝑓(𝑚 + 𝛥𝑚) ≈ 𝑓(𝑚) + 𝐽𝛥𝑚 (6) 

in which 𝐽 is the Jacobian matrix containing the partial derivative of all model-predicted measurements 

with respect to all model parameters 

𝐽𝑖,𝑗 =
𝜕𝑓𝑖

𝜕𝑚𝑗
 (7) 

Then, the objective function is minimized by setting its derivative to zero, leading to the following 

expression for the step size 𝛥𝑚 in each iteration (here formulated for geostatistical regularization): 

(𝐽𝑇𝐶𝑑𝑑
−1𝐽 + 𝐶𝑚𝑚

−1 )𝛥𝑚 = 𝐽𝑇𝐶𝑑𝑑
−1(𝑑𝑜𝑏𝑠 − 𝑓(𝑚)) + 𝐶𝑚𝑚

−1 (𝜇 − 𝑚) (8) 

After each iteration, the model-parameter set is updated, 𝑚𝑛𝑒𝑤 = 𝑚𝑜𝑙𝑑 + 𝛥𝑚, and the scheme is 

repeated until a convergence criterion is met.  

The scheme can be reformulated such that the order of the system of equations to be solved equals 

the number of measurements rather than the number of model parameters: 

𝑚𝑛𝑒𝑤 = 𝜇 + 𝐶𝑚𝑚𝐽
𝑇(𝐶𝑑𝑑 + 𝐽𝐶𝑚𝑚𝐽

𝑇)
−1
(𝑑𝑜𝑏𝑠 − 𝑓(𝑚𝑜𝑙𝑑) + 𝐽(𝑚𝑜𝑙𝑑 − 𝜇))  (9) 

The given expression is the original Gauß-Newton method for which variants regarding stabilization 

and improvement of efficiency exist. Examples of the approach are the Quasi-Linear Geostatistical 

Approach of Kitanidis (1995), or the open-source package pyGIMLi (Rucker et al. 2017). 

Due to the computationally demanding calculation of the Jacobian, the Gauß-Newton method 

becomes inefficient for problems with many measurements and many observations. In the conjugate-

gradient method, which also exists in many variants, the full Jacobian is not needed, as here only the 

derivative of the objective function 𝛷 with respect to all parameters rather than the derivative of all 

simulated measurements with respect to all parameters is needed. While the Gauß-Newton method 

requires evaluating as many adjoint equations as measurements, the conjugate gradient method 

works with a single combined adjoint equation. For an efficient application using geostatistical 

regularization, see Klein et al. (2017). 

The Gauß-Newton and conjugate gradient methods aim at finding the single best estimate minimizing 

the objective function. If the regularization is formulated as Tikhonov regularization, aiming at a single 

estimate is consistent. In a geostatistical framework this is not fully the case. Here, the prior 

information states that variability exists on all scales, including small ones, but the best estimate is 

much smoother than any single conditional realization that would meet the measurements. The 

geostatistical approach gives a linearized estimate of the conditional covariance 𝐶𝑚𝑚,𝑐: 
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𝐶𝑚𝑚,𝑐 ≈ (𝐽𝑇𝐶𝑑𝑑
−1𝐽 + 𝐶𝑚𝑚

−1 )
−1

= 𝐶𝑚𝑚 − 𝐶𝑚𝑚𝐽
𝑇(𝐶𝑑𝑑

−1 + 𝐽𝐶𝑚𝑚𝐽
𝑇)

−1
𝐽𝐶𝑚𝑚 (10) 

However, generating conditional realizations from the best estimate and the conditional covariance 

matrix is computationally very demanding if many model parameters are to be considered, and the 

linearization of the uncertainty propagation causes a bias in the uncertainty estimate if the model 

𝑓(𝑚) is too nonlinear. 

In contrast to geostatistical regularization, the Tikhonov regularization does not provide a direct 

uncertainty estimate, as the problem is not posed as a Bayesian inference problem. 

Ensemble Kalman Methods 

In data assimilation, Equation (9) is known as the extended Kalman filter. The original Kalman filter was 

developed for the strictly linear problem 𝑓(𝑚) = 𝐽𝑚. Then equation 9 simplifies to:  

𝑚 = 𝜇 + 𝐶𝑚𝑚𝐽
𝑇(𝐶𝑑𝑑 + 𝐽𝐶𝑚𝑚𝐽

𝑇)
−1
(𝑑𝑜𝑏𝑠 − 𝑓(𝜇))  (11) 

This variant is often used in weakly nonlinear problems. It solves the linearized problem by a single 

update step. 

In data assimilation, the states at unobserved locations rather than model parameters are estimated. 

Here, the mean 𝜇 is the propagated state vector originating from the predictive model and 𝑓(𝜇) is the 

measurement operator, relating the state vector to the observed quantities. If the state vector at a 

given time is updated and subsequently propagated further in time by the predictive model, the 

method is denoted Kalman Filter. By contrast, if the initial state of a forward model is updated to better 

meet the observations at the end of the time step, the method is denoted Kalman Smoother. In 

nonlinear subsurface-flow applications, such as in petroleum engineering, smoothers are preferred 

over filters as they produce physically more consistent model results. The Kalman filters and smoothers 

can be adapted to update for states and model parameters (Hendricks-Franssen and Kinzelbach, 2008), 

or parameters only (Nowak 2009; Schoniger et al. 2012). For brevity, we restrict the further discussion 

to pure model-parameter estimation. 

The matrix products in Equation (11) have clear statistical meanings: 

 𝐶𝑚𝑚𝐽
𝑇 = 𝐶𝑚𝑓 is the linearly propagated cross-covariance of model parameters 𝑚 and 

predicted observations 𝑓(𝑚) evaluated before updating the parameters, at 𝑚 = 𝜇, 

 𝐽𝐶𝑚𝑚𝐽
𝑇 = 𝐶𝑓𝑓 is the linearly propagated covariance matrix of the predicted observations. In 

the update step it is added to the covariance matrix 𝐶𝑑𝑑 expressing the measurement error of 

the data. The sum 𝐶𝑓𝑓 + 𝐶𝑑𝑑 thus expresses the total uncertainty of the measurements. 

The Kalman filter/smoother using the Jacobian 𝐽 is computationally very expensive for larger problems 

if the Jacobian cannot be computed analytically. Evensen (1994) suggested to replace the linearized 

uncertainty propagation by ensemble evaluations (see also Burgers et al. 1998; Evensen 2003). The 
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starting point is an ensemble of prior model parameter sets 𝑚𝑖
𝑝𝑟𝑖𝑜𝑟

 drawn from the prior Gaussian 

distribution with mean 𝜇 and covariance matrix 𝐶𝑚𝑚. With each ensemble member, a forward run is 

performed, resulting in an ensemble of measurement predictions 𝑓𝑖. Then the cross-covariance matrix 

𝐶𝑚𝑓 and the covariance matrix of model predictions 𝐶𝑓𝑓 can be evaluated from the ensemble: 

𝐶𝑚𝑓 = 𝑀
𝑝𝑟𝑖𝑜𝑟

𝐹𝑇 (12) 

𝐶𝑓𝑓 = 𝐹𝐹𝑇 (13) 

in which 𝑀
𝑝𝑟𝑖𝑜𝑟

 and  𝐹 are matrices the columns of which are the deviations of the individual 

parameter vectors 𝑚𝑖
𝑝𝑟𝑖𝑜𝑟

 and corresponding model predictions 𝑓𝑖 from their ensemble mean. Now, 

for each ensemble member also a random measurement error-vector 𝜀𝑖  drawn from the Gaussian 

distribution with zero mean and covariance matrix 𝐶𝑑𝑑 is added to the true observations 𝑑𝑜𝑏𝑠, and 

each individual ensemble member is updated by: 

𝑚𝑖
𝑝𝑜𝑠𝑡

= 𝑚𝑖
𝑝𝑟𝑖𝑜𝑟

+ 𝐶𝑚𝑓(𝐶𝑑𝑑 + 𝐶𝑓𝑓)
−1
(𝑑𝑜𝑏𝑠 + 𝜀𝑖 − 𝑓𝑖)  (14) 

The key advantages of the Ensemble Kalman filters and smoothers over the original variants is that  

 no costly Jacobian needs to be evaluated, 

 the scheme directly results in an ensemble of possible parameter sets exhibiting variability on 

all scales, 

 the ensemble-based propagated (cross-)covariance matrices are more representative for the 

entire parameter distribution than their Jacobian based counterparts, which are evaluated at 

the prior mean only. 

The Ensemble Kalaman Filter (EnKF) and Ensemble Kalman Smoother (EnKS) are easy to implement as 

they only require a forward model and a method to generate an initial ensemble. However, the 

methods are single linear update steps, which may lead to severe errors in strongly nonlinear 

applications. In the iterative Ensemble Kalman Smoother (IEnKS), the Gauß-Newton method of 

Equation (9) is transferred to the ensemble-based approach, circumventing the evaluation of the 

Jacobian (e.g., Evensen 2018). Even simpler is the Ensemble-Kalman Smoother with Multiple-Data 

Assimilation (EnKS-MDA), in which the same data are assimilated several times, but in each update 

step a considerably larger covariance matrix of the measurement error is applied than the original 𝐶𝑑𝑑 

(Evenson, 2018). In The Ensemble Kalman Generator (Nowak, 2009; Schöniger et al., 2012), the same 

data are used multiple times too, but here individual ensemble members are eliminated from the 

update step as soon as the likelihood term has reached a threshold value so that overfitting is 

prevented. 

A large number of variants exists for Ensemble Kalman filters and smoothers. Among the common 

techniques are the restriction to correlations to predefined zones of influence (denoted localization) 



WP5:D5.1/D12  DECEMBER 2018 

Validated algorithms for fully coupled 3-D inversion  

Page 19   

ENIGMA ITN - This project has received funding from European Union's Horizon 2020 research and innovation 
programme under the Marie Sklodowska-Curie Grant Agreement N°722028. 

to avoid artifacts introduced by small ensemble sizes, the rescaling of the predicted model outcomes 

to standard normal distributions (normal-score transformation), and the artificial increase of the 

ensemble spread after application of a few update cycles (variance inflation) to counteract so-called 

filter-inbreeding, that is, the reduction of the ensemble spread to unrealistically small values centered 

about the wrong mean. 

Within ENIGMA, ESR13 will use the Ensemble-Kalman Smoother with Multiple Data Assimilation for 

the inversion of steady-state drawdown from pumping tests, mean arrival times of solute tracers in 

tracer tests, and mean arrival times in electrical-potential perturbations for multiple electrode 

configuration obtained during salt-tracer tests. 

Markov Chain Monte Carlo Methods (MCMC) 

The geostatistics-based inversion introduced above is a special application of Bayes theorem: 

𝑝(𝑚 ∨ 𝑑) =
𝑝(𝑑∨𝑚)𝑝(𝑚)

𝑝(𝑑)
 (15) 

in which 𝑝(𝑚 ∨ 𝑑) is the conditional probability density function of the model parameters, given the 

data, 𝑝(𝑑 ∨ 𝑚) is the likelihood of the data provided that the model parameters are correct, 𝑝(𝑚) is 

the prior probability density function of the model parameters before considering the data of the 

dependent quantities, and 𝑝(𝑑) is the so-called Bayesian model evidence, which is a mere scaling 

factor if the objective of the inversion is to estimate the model parameters. A comparison between 

the objective function of Equation (5) and Bayes theorem reveals that assuming multi-Gaussian 

distributions of the likelihood and the prior parameter distribution leads to the combined Equations 

(1), (4), and (5) as maximum the a-posteriori likelihood of Equation (15) is identical to minimizing is 

negative logarithm. 

Both the Gauß-Newton and conjugate-gradient method and the Ensemble Kalman methods strictly 

require multi-Gaussianity of the underlying distributions, because otherwise the Bayesian inference 

problem cannot be converted to a weighted least-square optimization. The latter property is the very 

reason why the mentioned methods are comparably effective, because setting the derivative of a 

quadratic function to zero (in order to find the minimum) results in a system of linear equations. 

A second restriction of the methods discussed above is that they are all based on linearized uncertainty 

propagation, in case of the standard EnKF/EnKS about the prior ensemble, in case of the iterative 

EnKF/EnKS about the posterior ensemble, and in case of the Gauß-Newton method about the single 

best estimate. If the underlying model 𝑓(𝑚) is strongly nonlinear, the posterior distribution 𝑝(𝑚|𝑑) 

severely differs from a multi-Gaussian distribution even if the prior and likehood are multi-Gaussian. 

The aim of the Markov-Chain Monte-Carlo (MCMC) method is to explore the true conditional 

probability density function of the model parameters, regardless of multi-Gaussianity and linearized 

uncertainty propagation. As the name suggests, this is done by a Markov chain. The MCMC scheme 

generates one proposal parameter set after the other and computes the logarithm of the posterior 
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likelihood 𝑝(𝑚|𝑑) for this specific proposal. The log-posterior likelihood is then compared to the log-

posterior likelihood of the last accepted proposal, and depending on this comparison and a randomly 

drawn probability of acceptance, the new proposal is accepted or rejected. After the so-called burn-in 

period, the Markov chain becomes independent from the start and will sample the entire posterior 

probability density space, with the sampling density according to their posterior probability of the 

occurrence. To avoid undersampling of the pdf, the chains have to be rather long. Also, evaluating the 

posterior probability density of a proposal requires solving the full forward model. This implies that 

the method of proposing new realizations is crucial for the efficiency of the approach, because a low 

acceptance rate means solving many forward problems in vain. 

The large number of forward runs needed in MCMC is the reason why most applications are restricted 

to a small number of model parameters and forward models that can quickly be evaluated. Irving and 

Singha (2010) presented a synthetic study performing a fully coupled hydrogeophysical inversion of a 

2-D salt-tracer test monitored by ERT, in which they estimated the spatial distribution of two distinct 

facies by an MCMC approach. In the latter application, the hydraulic-conductivity value of each facies 

was uniform and known, but the spatial arrangement of the two facies was not. For the generation of 

proposal distributions, the authors kept 90% of the model cells constant, and generated new indicator 

values for the remaining 10% conditioned on the fixed 90%. In each proposal step, they randomly 

selected a different set of cells to be perturbed. In the virtual truth, they added auto-correlated 

variability in log-hydraulic conductivity to the indicator fields and also used a slightly different 

cementation factor in Archie’s law for the conversion of concentrations to electrical conductivities. The 

authors also considered direct observations of concentrations. While the study is very promising with 

respect to the applicability of MCMC to fully coupled hydrogeophysical inversion, it was restricted to 

a grid of 20×30 cells, facilitating forward runs within a few seconds. In realistic 3-D applications, the 

number of grid cells is more than three orders of magnitude larger 

Bayesian Evidential Learning 

The preceding methods aimed at determining hydraulic parameter values of the subsurface using 

hydraulic and geophysical data. The underlying hypothesis is that the inversion leads to conditional 

parameter fields that can be used for all hydrogeological predictions thinkable. The experience in 

practice, however, is often that tests performed in the field are sensitive to parameters in specific 

subdomains (e.g., hydraulic conductivities close to pumping and observation wells), whereas specific 

predictions, such as the breakthrough of a solute in a control plane, are sensitive to other parameters 

at other locations (e.g., the unresolved heterogeneity of hydraulic conductivity at points far away from 

the wells). Thus, the high effort of inferring parameter fields from measurements of dependent 

quantities may not be justified by the limited improvement of the predictive skills of the calibrated 

models. 

If the final application of the model is well defined (such as predicting solute breakthrough curves or 

drawdown according to not-yet-installed well), the estimation of the underlying parameter fields may 



WP5:D5.1/D12  DECEMBER 2018 

Validated algorithms for fully coupled 3-D inversion  

Page 21   

ENIGMA ITN - This project has received funding from European Union's Horizon 2020 research and innovation 
programme under the Marie Sklodowska-Curie Grant Agreement N°722028. 

not be necessary at all. Instead, a large ensemble of unconditional parameter fields can be used to 

generate corresponding ensembles of simulated field-survey measurements and of the well-defined 

prediction metrics. Then, machine-learning tools can be used to relate the observations of the field 

surveys to the management-related predictions without explicitly addressing the parameter fields that 

generated the relationship. Such methods are referred to as prediction-focused approaches (Scheidt 

et al., 2015; Hermans, 2017) or goal-oriented approaches (Sun and Sun, 2015). A Bayesian framework 

is particularly useful to solve such problems since relations between all variables involved may be 

expressed through conditional probabilities. Also, it is possible to add realistic structural information 

by means of non-multi-Gaussian prior distribution. 

Bayesian Evidential Learning (Scheidt and Caers, 2018) is a method proposed to find a direct 

probabilistic link from the observations to the predictions. It is based on Monte Carlo sampling of the 

whole joint probability distribution of the observations and predictions. Samples are generated by 

considering many realizations of the subsurface model parameters (expressed through the prior 

distribution) and then used to simulate the dynamic process to be predicted and the observations used 

to inform this process. The samples define the marginal distribution of the predictions and 

observations and the statistical dependence. 

Predictions and observations are usually lower-dimensional than the number of subsurface 

parameters (typically equaling an integer multiple of the number of computational grid cells), they are 

typically still too high-dimensional to be directly used (e.g., number of electrode configurations times 

number of times an ERT survey is performed as the dimension of the measurements, and number of 

times at which concentrations are to be considered times the number of target points as the dimension 

of predictions). Therefore, methods for dimension reduction have been applied to make Bayesian 

Evidential Learning computationally feasible. For instance, Scheidt et al. (2015) used a nonlinear 

principal component analysis (NLPCA) to reduce the dimensions of observations (concentration 

measurements in one borehole) and predictions (contaminant breakthrough in another borehole) and 

then applied kernel smoothing in the new low-dimensional space to approximate the posterior 

probability distribution of the prediction of interest. Similarly, Hermans et al. (2016) used a 

combination of principal component analysis (PCA) and canonical correlation analysis (CCA) to predict 

change in temperature due to transport of a heat tracer using borehole electrical resistivity 

tomography data. 
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Choosing the method of jointly analyzing geophysical and 

hydrogeological data most appropriate for the application 

The methods mentioned above differ in their computation effort, data requirement, and predictive 

skill. Typically, higher accuracy and larger generality of the analysis requires a higher experimental, 

computational (and conceptual) effort. Which type of effort pays of depends on the exact purpose of 

the analysis. We see four general fields of using geophysical methods in hydrogeological applications: 

(i) Using geophysical methods to identify structural features of the subsurface (geometry of 

major geological units, facies) without assigning hydrogeological properties to these 

features.  Structure identification 

(ii) Using geophysical surveying as a monitoring method to observe hydrogeological states 

(water saturation, groundwater table, salt concentration) without inferring 

hydrogeological parameter fields.  Geophysical monitoring 

(iii) Using geophysical methods as a tool to support hydrogeophysical inversion with the main 

target of identifying hydrogeological parameter fields.  Joint hydrogeophysical inversion 

(iv) Using geophysical methods to improve well defined hydrogeological predictions without 

requesting the underlying hydrogeological parameter fields.  Hydrogeophysical 

prediction 

Geophysical structure identification for hydrogeological purposes can rely on purely geophysical joint 

inversion methods, such as the cross-gradient regularization of disparate geophysical tests with 

subsequent cluster analysis (e.g., Paasche et al. 2006). Even though the geophysical facies will not be 

fully identical to hydrofacies, a sufficient agreement between the different facies can be used to define 

zones in hydrogeological models with distinct mean hydraulic parameters. The objective of structure 

identification does not require a fully coupled inversion framework. 

In geophysical monitoring a clear relationship between the hydrogeological state of interest (e.g., 

seawater concentration) and a geophysical property (e.g., electric conductivity) is needed. However, 

the geophysical observation can be used for a pure state update of the hydrogeological model. 

Particularly in the monitoring of dynamic systems, this is a classical data assimilation problem, in which 

the geophysical measurements prevent the hydrogeological model to deviate from the true system 

behavior. The geophysical measurements need not be used to update the hydrogeological model 

parameters. It may even be counterproductive if the deviation between measured and predicted 

geophysical observations stem from erroneous boundary conditions rather than hydraulic parameters. 

Most likely, a classical Ensemble Kalman Filter or Ensemble Kalman Smoother without parameter 

update is the appropriate method for such an application. 

Fully coupled hydrogeophysical inversion is more demanding as the target is to obtain the hydraulic 

parameters from geophysical data. Now the geophysical data must not only be sensitive to a 
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hydrogeological state, but also a clear dependence on the underlying hydraulic parameters is needed. 

To reduce ambiguity, this should be attempted only when geophysical surveying techniques are used 

in the monitoring of hydraulic tests in which hydraulic boundary conditions are well defined and a 

specific hydraulic stress is applied to the system. As mentioned above, it also pays off to consider which 

metrics in the geophysical response monotonically depend on the hydraulic property of interest and 

which metrics are the least affected by the uncertainty of petrophysical relationships. That is, while 

the original data could be a time series of electrical resistances, the mean time of the measured 

response may be a better indicator of hydraulic conductivity than the resistance time series itself. 

Successful applications include the Gauß-Newton method (Pollock and Cirpka, 2010, 2012) and the 

Markov-Chain Monte Carlo method (Irving and Singha, 2010), but the Iterative Ensemble-Kalman 

Smoother or the Ensemble-Kalman Smoother with Multiple Data Assimilation (Evenson, 2018) applied 

to the appropriate data metric appear promising, too. 

If the target of hydrogeophysical prediction is well defined, there is no need to infer the underlying 

hydrogeological parameter fields and machine learning techniques that directly relate the geophysical 

observations to the hydrogeological prediction may be the method of choice. We suggested Bayesian 

Evidential Learning for this purpose. However, many numerical tests need to be performed to choose 

appropriate dimension reduction techniques and to analyze which set of geophysical observations is 

most informative for a specific prediction task. 

In summary, it is important to clarify the purpose of a study before selecting the appropriate 

geophysical surveying technique and setup, the type of dynamic process model, and the method of 

joint data analysis. Unfortunately, in many practical applications the purpose of a model is not clearly 

enough defined in beforehand. Because the experimental and computational effort of joint/coupled 

hydrogeophysical site assessment is very high, unclear objectives can lead to suboptimal measurement 

designs and choice of data-analysis tools. 
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