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Time-lapse cross-hole electrical resistivity 

tomography (CHERT) for monitoring seawater 

intrusion dynamics in a Mediterranean aquifer

1. INTRODUCTION

2. ARGENTONA FIELD SITE 3. EXPERIMENTAL SETUP 

4. INVERSION METHOD 5. TIME-LAPSE RESULTS

Seawater Intrusion and Submarine 

Groundwater Discharge in a coastal 

aquifer consisting of layered alluvial 

deposits on top of weathered granite.

• Imaging of the transect perpendicular to 

the coastline. 

• 36 electrodes in 5 piezometers (PP20, 

PP15, N1, N2, N3) with electrode spacing 

from 40 to 70 cm.

• Acquisition time: 30 minutes per CHERT, 

more than 5000 data.

• 16 CHERT in two years.
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Time-lapse Surveys

(Bellmunt et al., 2012)
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Heavy Rain Events 

Decrease Conductivity
In October 2016, 250mm of 

precipitation in a few hours.

The salinity in the saline 

wedge decreased thanks to 

fresh water infiltration.

Storm Surges

Increase Conductivity
Early 2017, strong winds 

increased sea level and 

wave activity, affecting the 

upper part of the unconfined 

aquifer.

CHERT experiment improved our understanding of the SWI dynamics in the Argentona field site and captured the aquifer and saline wedge 

responses to important yearly events such as heavy rains and storms. 

•Conductivity of the unconfined aquifer did not significantly vary, 

except during and after storm period.

•Mean conductivity variations in the semi-confined aquifer show a 

response with respect to seasons and an overall increase of 

salinity.

Electrical Resistivity Tomography is a common practice for studying freshwater-seawater interface due to the positive correlation between salinity and electrical 

conductivity (EC). Nevertheless, not many studies have been presented about passive monitoring of a coastal aquifer using CHERT with real field datasets. 

With this work, we aim to provide a suitable experimental setup for imaging seawater intrusion and studying the natural and induced dynamic processes that occur in 

coastal aquifers. 
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Reference Model: Inversion of Surface and Crosshole ERT 

datasets from September 2015
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•Deterministic time-lapse inversion 

(using PyGimli framework).

•Reference model created inverting 

surface ERT and CHERT datasets. 

•Geostatistical regularization 

operator.

•Data error floor set at 3%.

•Occam type inversion (i.e., looking 

for the most smoothly varying 

model that fits the data).

Results are presented in terms of 

changes in EC (𝜎) because it tells us 

about Water Quality.

Time-lapse Inversion Strategy: 

Ratio Method

(Daily et al., 1992)

෪𝒅𝒊 =
𝒅𝒊
𝒅𝒐

𝒈(𝒎𝒓𝒆𝒇)

෩𝑑𝑖= input data for inversion

𝑑𝑖= data from time 𝑡𝑖
𝑑𝑜= data from baseline time 𝑡𝑜
𝑔(𝑚𝑟𝑒𝑓) = response from a 

reference model

Conductivity variation after a Heavy Rain event
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Formation Electrical 

Conductivity (EC)

(Waxman and Smits, 1968)

Pore water EC

Pore surface EC

(assumed constant)

Formation Electrical Factor 

(assumed constant)
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Seasonal variations and 

Salinization of the wedge
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∆𝝈 = 𝝈𝒂𝒇𝒕𝒆𝒓 − 𝝈𝒃𝒆𝒇𝒐𝒓𝒆

∆𝝈 = 𝝈𝒂𝒇𝒕𝒆𝒓 − 𝝈𝒃𝒆𝒇𝒐𝒓𝒆


