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Considering our incomplete knowledge of subsurface systems we have to deal with model 

uncertainty. In this study, we work with the parameterization or structure of this model to add 

uncertainty at different levels and, subsequently, update this uncertainty given some 

observed data using a Bayesian approach. To deal with the high dimensionality of the data 

space, we use dimension reduction in combination with regression techniques to approximate 

the posterior probability distribution. We present the application of parameterization by means 

of a hierarchical Bayesian model and the use of dimension reduction and non-parametric 

regression to update uncertainty in a subsurface model using geophysical data.

We use a Bayesian approach where we state prior probability distributions of 

parameters and then obtain their posterior probabilities conditioned on observed 

data. Uncertain parameters may be considered at different levels using a 

hierarchical Bayesian model (Wainwright et al., 2014; Feyen & Caers, 2006). The 

latter can be represented with a graphical model (Fig.2) which explicitly shows 

conditional dependencies, i.e. the factorization of the joint probability 

distribution. To obtain samples from this joint probability distribution or its 

marginals, we sample in topological order (i.e. starting with higher levels).
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Once a sufficient number of samples is taken, which is dependent on the nature 

of the problem, we can reduce data dimensionality by means of feature 

extraction and multi-dimensional scaling. For multi-dimensional scaling we need 

to define a distance between the samples then an algorithm will project the 

samples in a lower-dimensional space trying to preserve the original distances 

(Borg & Groenen, 2005). Finally, in this low-dimensional space we apply kernel 

smoothing to approximate the posterior probability distribution (Park et al., 2013; 

Scheidt et al., 2015).
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Joint probability distribution

is sampled through multiple-point geostatistics1.

is given by two Gaussian random fields2.

is given by considering two different petrophysical relations3.

4.

METHODOLOGY

We apply the method to synthetic GPR cross-borehole data. For illustration 

purposes we only show the effect of one uncertain discrete parameter: the 

geological scenario. We considered three different geological scenarios, two of 

them sampled through multiple-point geostatistics and the third through 

truncated sequential gaussian simulation (Fig.1a).

Cross-borehole GPR

The scenarios are built only from two facies, each of which is assigned a 

constant value for its EM wave velocity. The higher velocity facies presents a 

degree of continuity in the horizontal direction. In this way samples are 

transformed into spatial geophysical models and then traveltime data is 

simulated by means of a forward model and a model error (Fig.1b). To reduce 

the dimensions of these data, we choose to perform multi-dimensional scaling 

(Fig.1c) on: (1) traveltime data directly, (2) histograms of traveltime data, (3) 

"geophysical image", obtained from regularized inversion, and (4) connectivity 

indicators of the geophysical image (cf. Fig.3). Since we are working with a 

discrete parameter, we can compute the corresponding posterior distribution by 

using kernel smoothing separately for each geological scenario (Fig.4).

We use cross-validation to assess the performance of the method (Fig.5). By taking out one sample (and knowing its true scenario) we compute its posterior 

probability distribution with the rest of the samples then we classify the geological scenario according to the highest probability value and we also compute the mean 

posterior probabilities for all the samples corresponding to one true scenario (Hermans et al., 2015). In our synthetic case, the method performs better when we use 

directly the histograms of traveltime data which is also less computationally demanding than working with the geophysical image. We believe GPR cross-hole 

traveltime data is very informative in our case due to the presence of horizontally connected facies, as first arrivals correspond to EM waves traveling through higher 

velocity zones. We conclude that using a hierarchical Bayesian model in combination with an approximate calculation of the posterior probability distribution by 

application of kernel smoothing and multi-dimensional scaling on features of the traveltime GPR data effectively reduces uncertainty for the geological scenario.  

SYNTHETIC CASE

DISCUSSION AND CONCLUSION
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Figure 1. Summary of the workflow, showing as uncertain parameter the geological scenario.

Figure 2. Graphical representation of hierarchical Bayesian model.

a) b) c)

Figure 3. Multi-dimensional scaling applied to different transformations of the data.

Figure 4. Kernel smoothing applied to low-dimensional projection of the histograms of traveltime 
data; separate estimations for each geological scenario.

Figure 5. Cross-validation applied to each of the previous for cases, showing classification and 
mean updated probability matrices.
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