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1. INTRODUCTION

Despite numerous modelling studies on hyporheic exchange have advanced our understanding of general
mechanisms, they are often focused on local-scale processes with highly simplified boundary conditions (BC).
This may lead to a misrepresentation of the hyporheic exchanges and biogeochemical turnover capacity in river
corridors.

To close this conceptual gap, we aim to provide and integrate field and modelling approaches to quantify
exchange fluxes and processes between the hyporheic and stream system across different spatial and temporal
scales.
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7. OUTLOOK

We expect that simulation results will provide a more realistic representation
of exchange flows and reactions between the stream channel, hyporheic
zone and the underlying aquifer than by using steady hydraulic boundaries.

2. STUDY SITE

Lowest part of the Upper Emme valley [A=0.9 km2], Emmental, Switzerland

• Extremely dynamic pre-alpine alluvial catchment
• Qm_an: 4.4 m3/s (higher during snowmelt)
• Dense continuous monitored measurement network

• 8 GW abstraction wells (45% of Bern’s drinking water)
• 4 SW gauging stations (10 min interval)
• +30 piezometers (10-15 min interval)

• Kaq= 550 m/d, naq=0.1
• Krb= 2.4 m/d, nrb=0.41

Schilling et al., 2017

3. OBJECTIVES

1. Exploring realistic hydraulic boundary conditions for CFD modelling

2. Using a highly advanced modelling framework to explore the
superposition of different spatial and temporal scales for both
synthetic and highly instrumented field based environments (Emme-
catchment)

3. Integrating innovative field observations (tracer and UAV data) in this
modelling process

5. GROUNDWATER MODELLING

Fully coupled surface-subsurface flow and
reactive transport model:

• Sequentially coupling: transient streambed
pressures obtained from CFD modelling used as
BC

• Simulate both exchange flow and biogeochemical
turnover in the hyporheic sediments

• Hydraulic Mixing Cell (HMC) flow tracking tool for
mixing ratios simulation throughout the entire
domain (Partington et al., 2011)

• Parameter estimation:

Schilling et al., 2017
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4. STREAM FLOW SIMULATIONS

Computational Fluid Dynamics (CFD) code:

• Solver: two-phase (air-water) algorithm interFoam based on the volume of fluid
(VOF) method

• Transient flow simulation (Trauth et al., 2017)

• Local hydraulic head distribution at the streambed

Velocities Hydraulic heads

Q=10 m3/s

Q=10 m3/s Q=10 m3/s

Q=10 m3/s

6. FIELD DATA

• High-resolution state-of-the-art LIDAR-
UAV characterization of the streambed
(pre and post-flood event)

• Multitracer data: novel 37Ar-method (on-
site MiniRuedi) in addition to 222Rn (on-
site RAD7), 3H/3He and atmospheric
noble gases for appropriate flow model
parametrization

• Hydraulic (groundwater heads, pumping
rates, precipitation, solar radiation +
temperature (PET)) –and also UAV– field
data

http://www.openfoam.com/

