Poster: Hydrogeophysical monitoring of a controlled infiltration experiment at the Ploemeur Hydrological Observatory (Brittany, France)

Event: Journées des Doctorants – Ecole Doctorale Géosciences, Ressources Naturelles et Environnement – Paris (France), 19/03/2019
Poster by Lara Blazevic, Ludovic Bodet, Laurant Longuevergne, Sylvain Pasquet, Damien Jougnot


Blazevic_JDD2019Poster_v2


More on ESR5 research project

Poster: Finding appropriate rocks physics models to interpret seismic data in hydrogeophysics applications

Event: AGU Fall Meeting 2018, Washington DC (USA)
poster by Lara Blazevic, Ludovic Bodet, Damien Jougnot, Laurent Longuvergne

Abstract

Seismic methods have been recently applied to the monitoring of spatial and temporal variations of near surface characteristics for hydrogeological purposes. The seismic signal is certainly related to mechanical properties that partly depend on porosity and saturation. The behavior of pressure (P) and shear (S) waves in the presence of water is partially decoupled, and the ratio of their propagation velocities VP/VS has been used to study water saturation changes.

However, the interpretation of the mechanical properties remains complex in unconsolidated near surface materials, limiting the quantitative description of linked hydrodynamic properties. In this study, we investigate the theories behind wave propagation velocities in poorly consolidated media and how they are affected by water content, focusing our discussion on the partially saturated response.

We present a field case where we used a Hertz-Mindlin based rock physics model to estimate water saturation from VP and VS from seismic data. The model is able to distinguish between dry and fully saturated areas at two distinct hydrological periods, but fails in identifying partially saturated areas in both cases. This work underlines the need for more elaborated models to infer hydrodynamic properties from seismic data.


More on AGU website

More on ESR5 research project